
1 Linear, Nonlinear, Linear Homogeneous, and Linear Inho-
mogeneous

Exercise 1.1

For each of the following equation, determine whether it is nonlinear or linear. If

it is linear, determine whether it is homogeneous or inhomogeneous.

1. ux + eyuy = 0;

2. ux + uy + 1 = 0;

3. ux +
(

u2

2

)
y
= 0;

4. ut − uxx + u3=0.

Solutions:

1. linear homogeneous.

2. linear inhomogeneous.

3. nonlinear. Since L u = ux + uuy, and

L (u+ v) = (u+ v)x + (u+ v)(u+ v)y

= L u+ L v + uvy + vuy

̸= L u+ L v,

L is not a linear operator. Note that the nonlinear part is uuy.

4. nonlinear. Since L u = ut − uxx + u3,

L (u+ v) = (u+ v)t − (u+ v)xx + (u+ v)3

= L u+ L v + 3u2v + 3uv2

̸= L u+ L v,

L is not a linear operator. Note that the nonlinear part is u3.

Remark 1.1

In practice, there are more specific classifications of nonlinear PDEs. For equa-

tion 4, we could observe that if we regard the nonlinear part u3 as a function of x

and t, then it is a linear inhomogeneous equation. This type of nonlinear equations

is usually called semilinear PDEs, usually with the formL u = f(u)whereL is

a linear operator. For equation 3, if we regard the nonlinear part uuy as f(x)uy,
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then it is a linear equation (transport equation). This type of nonlinear equations

is usually called quasilinear PDEs, usually with the form L (u, ∂u, . . .)u = 0,

where L (u, ∂u, . . .)means that the coefficients of the linear operator depend on

u, ∂u, . . ., with lower orders than the terms in the linear operator.
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2 Integration by Parts and Green’s Formula

Firstly, we recall the divergence theorem:∫
Ω

div F⃗ =

∫
∂Ω

F⃗ · n⃗ dS.

Suppose Ω ⊂ Rn is bounded and open.

Definition 2.1

We say ∂Ω ∈ Ck if for each point x ∈ ∂Ω, there is a r > 0 and a Ck function

γ : Rn−1 → R such that, upon relabeling and reorienting the coordinate axes if

necessary,

Ω ∩B(x0, r) = {x ∈ B(x0, r) | xn > γ(x1, . . . , xn−1)}.

∂Ω ∈ C∞ means that γ is C∞.

This notion is related to the notion manifolds with boundary in differential ge-

ometry. Now we have a precise version of the divergence theorem.

Theorem 2.1 Suppose that ∂Ω ∈ C1 and F⃗ ∈ C1(Ω). Then∫
Ω

div F⃗ =

∫
∂Ω

F⃗ · n⃗ dS

where n⃗ is the normal vector.

If we let the i-th component of F be uv and other components be 0, then we have

the formula of integration by parts in high dimensions.

Theorem 2.2 Suppose that ∂Ω ∈ C1 and u, v ∈ C1(Ω). Then∫
Ω

uiv = −
∫
Ω

uvi +

∫
∂Ω

uvn⃗i dS.

This formula also have the function of transferring a derivative from one to an-

other. Sometimes it is more flexible than the divergence theorem, because it just

focus on one derivative.

As an application of integration by parts, next we introduce Green’s formula

as an exercise.

Exercise 2.1

Suppose that ∂Ω ∈ C1 and u, v ∈ C2(Ω). Prove the following identities.

1.
∫
Ω
∆u =

∫
∂Ω

∂u
∂n⃗

dS;
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2.
∫
Ω
∇u · ∇v = −

∫
Ω
u∆v +

∫
∂Ω

u ∂v
∂n⃗

dS;

3.
∫
Ω
(u∆v − v∆u) =

∫
∂Ω

(
u ∂v
∂n⃗

− ∂u
∂n⃗
v
)
dS,

where ∂f
∂n⃗

= n⃗ · ∇f is the derivative of f in the direction of the normal vector.

Solutions:

1. By integration by parts,∫
∆u =

∫ ∑
i

uii =

∫
∂Ω

∑
i

uin⃗i =

∫
∂Ω

∂u

∂n⃗
.

2. By integration. by parts,∫
∇u·∇v =

∫ ∑
i

uivi = −
∫ ∑

i

uvii+

∫
∂Ω

∑
i

uvin⃗i = −
∫

u∆v+

∫
∂Ω

u
∂v

∂n⃗
.

3. Note that the left hand side of 2 is symmetric with respect to u and v. If we

switch u and v, we obtain that∫
∇u · ∇v = −

∫
v∆u+

∫
∂Ω

v
∂u

∂n⃗
.

By subtracting them, we could obtain 3. 3 could also be proved by inte-

gration by parts twice, which is a standard process. You could try it as an

exercise to be familiar to integration by parts.

This section is mainly from Evans’ PDE appendix C.1 and C.2. You may refer

to it.

4


